Entity Framework Core 3.0 – “Hidden” GROUP BY Capabilities (Part 2)

In the previous blog post we used a navigational property to work around the limitations of the extension method GroupBy. The problem is, there is not always such a property we can use for grouping. Especially, when following domain driven design practices, a bidirectional navigation is undesirable to not to pollute the domain model (too much). Besides not introducing a navigational property intentionally there might be use cases when we have to group data by property such as the name of a record. In this case there simply cannot be a navigational property.

In this article:

pg
Pawel Gerr is architect and consultant at Thinktecture. He focuses on backends with .NET Core and knows Entity Framework inside out.

In this post we look at LINQ queries that behave in the same way as the navigational property we used in the previous post:

				
					var firstProducts = Context.ProductGroups  
   .Select(g => g.Products.OrderBy(p => p.Name).FirstOrDefault())  
   .ToList();
				
			

Let’s achieve the same without using the property Products. Yet again, we start from the product groups but instead of using the navigational property we use the DbSet Products. The join condition between a group and the products is specified inside of the extension method FirstOrDefault.

				
					var firstProducts = Context.ProductGroups  
   .Select(g => Context.Products  
       .OrderBy(p => p.Name)  
       .FirstOrDefault(p => p.GroupId == g.Id))  
   .ToList();
				
			

The generated SQL looks like the following:

				
					SELECT [t0].*  
FROM  
   ProductGroups AS p  
   LEFT JOIN  
   (  
      SELECT *  
      FROM  
      (  
         SELECT *, ROW_NUMBER() OVER(PARTITION BY p0.GroupId ORDER BY p0.Name) AS row  
         FROM [Products] AS [p0]  
      ) AS [t]  
      WHERE [t].[row] <= 1  
   ) AS t0 ON p.Id = t0.GroupId
				
			

The SQL statement is identical to the one that was generated when using the navigational property.

Now, imagine there is no DbSet ProductGroups and the property GroupId is just a regular property like Name. As a replacement for missing ProductGroups we use SELECT DISTINCT GroupId on the Products. The 2nd part of the query stays the same.

				
					var firstProducts = Context.Products  
   .Select(p => p.GroupId)  
   .Distinct()  
   .Select(id => Context.Products  
        .OrderBy(p => p.Name)  
        .FirstOrDefault(p => p.GroupId == id))  
   .ToList();

				
			

The generated SQL statement is:

				
					 SELECT [t1].*  
    FROM  
    (  
       SELECT DISTINCT p.GroupId  
       FROM Products AS p  
    ) AS t  
    LEFT JOIN (  
        SELECT t0.*  
        FROM (  
            SELECT p0.*, ROW_NUMBER() OVER(PARTITION BY p0.GroupId ORDER BY p0.Name) AS row  
            FROM Products AS p0  
        ) AS t0  
        WHERE t0.row <= 1  
    ) AS t1 ON t.GroupId = t1.GroupId
				
			

For grouping of data using built-in capabilities of Entity Framework Core 3.0 should be enough for most cases. For more advanced use cases we can’t do much but extending EF with custom functionality.

Demos: NavigationPropertiesAlternativeQueriesDemo.cs

Free
Newsletter

Current articles, screencasts and interviews by our experts

Don’t miss any content on Angular, .NET Core, Blazor, Azure, and Kubernetes and sign up for our free monthly dev newsletter.

EN Newsletter Anmeldung (#7)
Related Articles
.NET
pg
While basic value objects solve primitive obsession, complex domain requirements need sophisticated modeling techniques. This article explores advanced patterns using Thinktecture.Runtime.Extensions to tackle real-world scenarios: open-ended dates for employment contracts, composite file identifiers across storage systems, recurring anniversaries without year components, and geographical jurisdictions using discriminated unions.
19.10.2025
.NET
pg
Domain models often involve concepts that exist in multiple distinct states or variations. Traditional approaches using enums and nullable properties can lead to invalid states and scattered logic. This article explores how discriminated unions provide a structured, type-safe way to model domain variants in .NET, aligning perfectly with Domain-Driven Design principles while enforcing invariants at the type level.
06.10.2025
.NET
pg
Learn how to seamlessly integrate Smart Enums with essential .NET frameworks and libraries. This article covers practical solutions for JSON serialization, ASP.NET Core model binding for both Minimal APIs and MVC controllers, and Entity Framework Core persistence using value converters. Discover how Thinktecture.Runtime.Extensions provides dedicated packages to eliminate integration friction and maintain type safety across your application stack.
21.09.2025