Entity Framework Core 3.0 – “Hidden” GROUP BY Capabilities (Part 2)

In the previous blog post we used a navigational property to work around the limitations of the extension method GroupBy. The problem is, there is not always such a property we can use for grouping. Especially, when following domain driven design practices, a bidirectional navigation is undesirable to not to pollute the domain model (too much). Besides not introducing a navigational property intentionally there might be use cases when we have to group data by property such as the name of a record. In this case there simply cannot be a navigational property.

In this article:

pg
Pawel Gerr is architect and consultant at Thinktecture. He focuses on backends with .NET Core and knows Entity Framework inside out.

In this post we look at LINQ queries that behave in the same way as the navigational property we used in the previous post:

				
					var firstProducts = Context.ProductGroups  
   .Select(g => g.Products.OrderBy(p => p.Name).FirstOrDefault())  
   .ToList();
				
			

Let’s achieve the same without using the property Products. Yet again, we start from the product groups but instead of using the navigational property we use the DbSet Products. The join condition between a group and the products is specified inside of the extension method FirstOrDefault.

				
					var firstProducts = Context.ProductGroups  
   .Select(g => Context.Products  
       .OrderBy(p => p.Name)  
       .FirstOrDefault(p => p.GroupId == g.Id))  
   .ToList();
				
			

The generated SQL looks like the following:

				
					SELECT [t0].*  
FROM  
   ProductGroups AS p  
   LEFT JOIN  
   (  
      SELECT *  
      FROM  
      (  
         SELECT *, ROW_NUMBER() OVER(PARTITION BY p0.GroupId ORDER BY p0.Name) AS row  
         FROM [Products] AS [p0]  
      ) AS [t]  
      WHERE [t].[row] <= 1  
   ) AS t0 ON p.Id = t0.GroupId
				
			

The SQL statement is identical to the one that was generated when using the navigational property.

Now, imagine there is no DbSet ProductGroups and the property GroupId is just a regular property like Name. As a replacement for missing ProductGroups we use SELECT DISTINCT GroupId on the Products. The 2nd part of the query stays the same.

				
					var firstProducts = Context.Products  
   .Select(p => p.GroupId)  
   .Distinct()  
   .Select(id => Context.Products  
        .OrderBy(p => p.Name)  
        .FirstOrDefault(p => p.GroupId == id))  
   .ToList();

				
			

The generated SQL statement is:

				
					 SELECT [t1].*  
    FROM  
    (  
       SELECT DISTINCT p.GroupId  
       FROM Products AS p  
    ) AS t  
    LEFT JOIN (  
        SELECT t0.*  
        FROM (  
            SELECT p0.*, ROW_NUMBER() OVER(PARTITION BY p0.GroupId ORDER BY p0.Name) AS row  
            FROM Products AS p0  
        ) AS t0  
        WHERE t0.row <= 1  
    ) AS t1 ON t.GroupId = t1.GroupId
				
			

For grouping of data using built-in capabilities of Entity Framework Core 3.0 should be enough for most cases. For more advanced use cases we can’t do much but extending EF with custom functionality.

Demos: NavigationPropertiesAlternativeQueriesDemo.cs

Free
Newsletter

Current articles, screencasts and interviews by our experts

Don’t miss any content on Angular, .NET Core, Blazor, Azure, and Kubernetes and sign up for our free monthly dev newsletter.

EN Newsletter Anmeldung (#7)
Related Articles
.NET
pg
Traditional C# pattern matching with switch statements and if/else chains is error-prone and doesn't guarantee exhaustive handling of all cases. When you add new types or states, it's easy to miss updating conditional logic, leading to runtime bugs. The library Thinktecture.Runtime.Extensions solves this with built-in Switch and Map methods for discriminated unions that enforce compile-time exhaustiveness checking.
26.08.2025
.NET
pg
Value Objects in .NET provide a structured way to improve consistency and maintainability in domain modeling. This article examines their integration with popular frameworks and libraries, highlighting best practices for seamless implementation. From working with Entity Framework to leveraging their advantages in ASP.NET, we explore how Value Objects can be effectively incorporated into various architectures. By understanding their role in framework integration, developers can optimize data handling and enhance code clarity without unnecessary complexity.
12.08.2025
.NET
pg
This article builds upon the introduction of Smart Enums by exploring their powerful capability to encapsulate behavior, a significant limitation of traditional C# enums. We delve into how Thinktecture.Runtime.Extensions enables embedding domain-specific logic directly within Smart Enum definitions. This co-location of data and behavior promotes more cohesive, object-oriented, and maintainable code, moving beyond scattered switch statements and extension methods. Discover techniques to make your enumerations truly "smart" by integrating behavior directly where it belongs.
29.07.2025