Entity Framework Core – Isolation Of Integration Tests

When working with Entity Framework Core (EF) a lot of code can be tested using the In-Memory database provider but sometimes you want (or have) to go to the real database. For example, you are using not just LINQ but custom SQL statements due to performance reasons or you want to check that a specific exception is thrown by the database under some conditions like when having a primary key violation.

In this article:

pg
Pawel Gerr is architect consultant at Thinktecture. He focuses on backends with .NET Core and knows Entity Framework inside out.
The biggest challenge of integration tests is the isolation of one test from another. In this post we will look at 3 options how to do that. The code for the 3rd option is on GitHub: PawelGerr/EntityFrameworkCore-Demos

Remarks: in my demos I’m using 3rd party libs: FluentAssertions and xunit.

Given is a DemoRepository with a method AddProduct that we want to test. (The code kept oversimplified for clarity reasons)

				
					public class DemoRepository
{
  ...

  public void AddProduct(Guid id)
  {
    _dbContext.Products.Add(new Product { Id = id });
    _dbContext.SaveChanges();
  }
}

				
			

Using Transaction Scopes

EF Core added support for [TransactionScope](https://docs.microsoft.com/en-us/ef/core/saving/transactions#using-systemtransactions) in version 2.1.

The isolation of tests via TransactionScope is very simple just wrap the call AddProduct into a TransactionScope to revert all changes at the end of the test. But, there are few preconditions. The testing method must not starting transactions using BeginTransaction() or it has to use a TransactionScope as well.

Also, I recommend to read my other blog post: Entity Framework Core: Use TransactionScope with Caution!

				
					public DemoRepositoryTests()
{
  _dbContext = CreateDbContext();
  _repository = new DemoRepository(_dbContext);
}

[Fact]
public void Should_add_new_product()
{
  var productId = new Guid("DBD9439E-6FFD-4719-93C7-3F7FA64D2220");

  using(var scope = new TransactionScope())
  {
    _repository.AddProduct(productId);

    _dbContext.Products.FirstOrDefault(p => p.Id == productId).Should().NotBeNull();

    // the transaction is going to be rolled back because the scope is not completed
    // scope.Complete();
  } 
}

				
			

Using new Databases

Creating a new database for each test is very easy but the tests are very time consuming. On my machine each test takes about 10 seconds to create and to delete a database on the fly.

The steps of each test are: generate a new database name, create the database by running EF migrations and delete the database in the end.

				
					public class DemoRepositoryTests : IDisposable
{
  private readonly DemoDbContext _dbContext;
  private readonly DemoRepository _repository;
  private readonly string _databaseName;

  public DemoRepositoryTests()
  {
    _databaseName = Guid.NewGuid().ToString();

    var options = new DbContextOptionsBuilder<DemoDbContext>()
              .UseSqlServer($"Server=(local);Database={_databaseName};...")
              .Options;

    _dbContext = new DemoDbContext(options);
    _dbContext.Database.Migrate();

    _repository = new DemoRepository(_dbContext);
  }

  // Tests come here

  public void Dispose()
  {
    _dbContext.Database.ExecuteSqlCommand((string)$"DROP DATABASE [{_databaseName}]");
  }
}
				
			

Using different Database Schemas

The 3rd option is to use the same database but different schemas. The creation of a new schema and running EF migrations usually takes less than 50 ms, which is totally acceptable for an integration test. The prerequisites to run queries with different schemas are schema-aware instances of DbContext and schema-aware EF migrations. Read my blog posts for more information about how to change the database schema at runtime:

The class executing integration tests consists of 2 parts: creation of the tables in constructor and the deletion of them in Dispose().

I’m using a generic base class to use the same logic for different types of DbContext.

In the constructor we generate the name of the schema using Guid.NewGuid(), create DbContextOptions using DbSchemaAwareMigrationAssembly and DbSchemaAwareModelCacheKeyFactory described in my previous posts, create the DbContext and run the EF migrations. The database is now fully prepared for executing tests. After execution of the tests the EF migrations are rolled back using IMigrator.Migrate("0"), the EF history table __EFMigrationsHistory is deleted and newly generated schema is dropped.

				
					public abstract class IntegrationTestsBase<T> : IDisposable
  where T : DbContext
{
  private readonly string _schema;
  private readonly string _historyTableName;
  private readonly DbContextOptions<T> _options;

  protected T DbContext { get; }

  protected IntegrationTestsBase()
  {
    _schema = Guid.NewGuid().ToString("N");
    _historyTableName = "__EFMigrationsHistory";

    _options = CreateOptions();
    DbContext = CreateContext();
    DbContext.Database.Migrate();
  }

  protected abstract T CreateContext(DbContextOptions<T> options, 
                                     IDbContextSchema schema);

  protected T CreateContext()
  {
    return CreateContext(_options, new DbContextSchema(_schema));
  }

  private DbContextOptions<T> CreateOptions()
  {
    return new DbContextOptionsBuilder<T>()
        .UseSqlServer($"Server=(local);Database=Demo;...", 
                builder => builder.MigrationsHistoryTable(_historyTableName, _schema))
        .ReplaceService<IMigrationsAssembly, DbSchemaAwareMigrationAssembly>()
        .ReplaceService<IModelCacheKeyFactory, DbSchemaAwareModelCacheKeyFactory>()
        .Options;
  }

  public void Dispose()
  {
    DbContext.GetService<IMigrator>().Migrate("0");
    DbContext.Database.ExecuteSqlCommand(
           (string)$"DROP TABLE [{_schema}].[{_historyTableName}]");
    DbContext.Database.ExecuteSqlCommand((string)$"DROP SCHEMA [{_schema}]");

    DbContext?.Dispose();
  }
}
				
			

The usage of the base class looks as follows

				
					public class DemoRepositoryTests : IntegrationTestsBase<DemoDbContext>
{
  private readonly DemoRepository _repository;

  public DemoRepositoryTests()
  {
    _repository = new DemoRepository(DbContext);
  }

  protected override DemoDbContext CreateContext(DbContextOptions<DemoDbContext> options, 
                                                 IDbContextSchema schema)
  {
    return new DemoDbContext(options, schema);
  }

  [Fact]
  public void Should_add_new_product()
  {
    var productId = new Guid("DBD9439E-6FFD-4719-93C7-3F7FA64D2220");

    _repository.AddProduct(productId);

    DbContext.Products.FirstOrDefault(p => p.Id == productId).Should().NotBeNull();
  }
}
				
			

Happy testing!

Free
Newsletter

Current articles, screencasts and interviews by our experts

Don’t miss any content on Angular, .NET Core, Blazor, Azure, and Kubernetes and sign up for our free monthly dev newsletter.

EN Newsletter Anmeldung (#7)
Related Articles
AI
sg
One of the more pragmatic ways to get going on the current AI hype, and to get some value out of it, is by leveraging semantic search. This is, in itself, a relatively simple concept: You have a bunch of documents and want to find the correct one based on a given query. The semantic part now allows you to find the correct document based on the meaning of its contents, in contrast to simply finding words or parts of words in it like we usually do with lexical search. In our last projects, we gathered some experience with search bots, and with this article, I'd love to share our insights with you.
17.05.2024
Angular
SL-rund
If you previously wanted to integrate view transitions into your Angular application, this was only possible in a very cumbersome way that needed a lot of detailed knowledge about Angular internals. Now, Angular 17 introduced a feature to integrate the View Transition API with the router. In this two-part series, we will look at how to leverage the feature for route transitions and how we could use it for single-page animations.
15.04.2024
.NET
KP-round
.NET 8 brings Native AOT to ASP.NET Core, but many frameworks and libraries rely on unbound reflection internally and thus cannot support this scenario yet. This is true for ORMs, too: EF Core and Dapper will only bring full support for Native AOT in later releases. In this post, we will implement a database access layer with Sessions using the Humble Object pattern to get a similar developer experience. We will use Npgsql as a plain ADO.NET provider targeting PostgreSQL.
15.11.2023